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SYMBOLS

Acceleration

Angular momentum of rotor blade
Rotationnal rate

Moment of inertia

Coordinate transformation matrix
External moment

Rotor rate

Rotor azimuth

Flapping angle

Lead-lag angle

x-axis component of rotation rate
y-axis component of rotation rate
z-axis component of rotation rate
Unit vector along x-axis

Unit vector along y-axis

Unit vector along z-axis

Hinge offset from rotor shaft
Mass of rotor blade

Distance to blade center of mass from hinge point
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Subscripts and Superscripts

Fixed shaft-frame
Rotating shaft-frame
Blade-frame
Principal axes frame
Blade hinge point
Blade center of mass
x-axis component
y-axis component

z-axis component



NOTATION

The subscripts, superscripts and symbols used in this paper are de-
fined below. The notation conventions are as follows:

1. All vectors are denoted by arrows over a symbol. A symbol

=S
without an arrow represents a scalar magnitude. For example, w

represents an angular rotation rate vector while w represents the

-5
magnitude of w.

2, The reference point of the vector is given by the super-

. »s'-s .
scripts. For example, the symbol w represents the rotational rate

vector of the s'-frame with respect to the s-frame. The second super-

script is dropped if the reference point is inertial. Instead of writing

. , . »>g'-
the angular rate of the s'-frame relative to the inertial frame as w I

L . +>s'
it is then written as w .

3. The second subscript denotes the reference frame into which a

vector is resolved and the first subscript gives the axis of that frame.

'
The symbol wis then gives the magnitude of the x component of the iner-

tial rotation rate of the s'-frame resolved in s-frame coordinates. For
conciseness, when a vector is resolved into the same coordinates frame

that it references the superscript is dropped. For example, the symbol
]

S . . . .
LA refers to the magnitude of the x component of the inertial rotation

rate of the s'-frame resolved in s'-frame coordinates, so it is written

instead as w_ ,.
XS

4. The symbols p, q and r are used in place of W wy and v,

respectively to represent magnitudes of the components of rotational

s' . :
rates, The symbol W oo Fepresenting the magnitude of the X component

of the inertial rotation rate of the s'-frame resolved in s-frame coor—

. . . s’
dinates, is then written as Pge

vi



SUMMARY

The inertial dynamics of a fully articulaced stiff rotor

applications. The model for the derivation includes hinge offset
and six degrees of freedom for the rotor shaft. Results are com-
pared with the flapping and lead-1lag equations currently used in
the Rotor Svstems Research Aircraft (RSRA) simulation model and

differences are analyzed.



INTRODUCTION

A general purpose rotor model is a necessary starting point in the
analysis and simulation of rotorcraft, 1In addition to allowing for
flexibility in simulation such a model also serves as a consistent
baseline from which a variety of more specialized models can be derived
to satisfy specific analytical and simulation requirements,

This paper derives the inertial dynamics of a fully articulated,
stiff rotor blade with offset hinges and sia degrees of freedom of the
shaft. Hingeless rotors can be represented by using appropriate values
of spring stiffness and hinge offset in this fully articulated model.

A configuration of current interest is the Sikorsky $-61 rotor.
This rotor is being utilized on the Rotor Systems Research Aircrafte
(RSRA) and mathematical models are given in Ref. 1 and Ref. 2. The
current simulation utilizes the model of Ref. 1, however the complexity
of the model has thus far prohibited real-time simulation of acceptable
quality on existing computational facilities, Implementation is further
complicated by the fact that these equations are not presented in a
modular, building block form that permits efficient programming. At-
tempts to modify these equations to provide a real-time simulation on
available computers have been hampered by the fact that their derivation
is not documented. A lack of symmetry in some of the terms and an
uncertainty as to the assumptions employcd prompted the author oi Ref. 2
to perform an independent derivation from basic principles as a basis
for the analysis of computation requirements. Hig approach, however,
was significantly different from that taken in Ref. 1, so0 no comparison

with those equations was possible.
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The derivation performed in this paper is intended to provide a
comparison with the rotor inertial dynamics of Ref. 1 as well as to pre-
sent these equations in a format more suitable for structured program-
ming. It is hoped that the results will provide a basis for more special-
ized formulations as well as permit a more efficient programming approach
for the general formulation.

In Chapter 1 the derivation is outlined and the most significant
steps are presented along with the final results. The equations are
first derived in the blade-frame since the moments of inertia are assumed
constant in this frame (see Appendix C). The blade-frame variables are
then expressed in terms of rotating shaft-frame components to obtain
differential equations for flapping and lead-lag motions. Finally, the
rotating shaft frame variables are given in terms of the fixed shaft-
frame rates and accelerations. Chanter 2 presents a comparison of the
results with the equations of Ref. 1 and Ref. 2 and Chapter 3 gives the
conclusions and recommendations. A description of the coordinate systems

and supporting derivations are given in the Appendices.



Chapter 1
Derivation of Rotor Dynamics

The inertial forces present in the flapping and lugging equations

are derived based on the following assumptions:

1. The rotor shaft has six degrees of freedom.
2. The rotor blade is hinged in both the flapping and lead-lag
axes.
3. The flapping and lead- lag hinges are co-located at an
offset, e, from the shaft axis.
4. The rotor blade is stiff.
The equation for the rotational dynamics of a fully articulated rotor blade

with co-located offset hinges, as shown in Fig. A1, is (Ref. 3):

-> > — N
1.1) M=muR x AP + 0"

>h
The vector M represents the total external moments
acting about the hinges and may be written in the blade coordinate

systems as:

sh_ . h 7 h h »
1.2) M Mb1b+M b+Mzb kb

-
The vector R represents the position of the blade center of mass
relative to the hinges and is written as:

> >
1.3) R = ij

>
The inertial acceleration of the hinges, Ah,is given in the blade

coordinate system as:
—>h h > h > h ->
1.4) A = Axb i + Ayb jy t+ Ay Ky

The angular momentum vector of the blade about the hinges is given in

the blade frame as:
> - > -

h h h h
Ti = i
1.5) H 1] + H gt +H b k‘

We now substitut. 1,2), 1.3), 1.4) and 1.5) into 1.1) and

perform the indicated c¢ross~-products to obtain:

»P - g h
1.6 mRAb+HXb
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h ‘h
1.7 M =H
) ¥yb yb
h . _ h ~h
1.8) MZb mR Axb + sz

Fquations 1.6) and 1.8) are the fundamental relationships from

which blade flapping and lead-lag dynamics may be derived.

The components of hinge acceleration in the blade-frame are

derived in Appendix D and given in terms of rotating shaft frame rates

and accelerations as:

h r.s . 'y s 2 2 v
. = 8! - - - ind - )'
1.9) AXb cos LAxs' e(rs, qs,ps,zl sin LAys' e(ps, + a1’
1.10) Ah = -sinB‘FAS + e(é + q ,r j
yb zs' s' s''s'

AN

{

1.11) Ah = cosB<A
zb L

N »w

ot Telpgr tagr )
. . s . ' T8 2 2
+ 51n3isxn5 A v - e(rs, - qs,ps,) + cosétAys. -e(p,, T,

The blade-~frame components of the time rate of change of the

angular momentum of the blade about the hinge are derived in Appendix C and

arez given in terms of rotating shaft-frame rates as:

1.12) H;% = IJ%S,COSG ik sind - (p , sind + 9t cos@5- 3
o
+ (cos 8 - sin B (p ,siné + qg ,cosd)(r , - 5%
\"v
- sinB cosB{krs, - 5)2 - (p ,sind + qg ,cos® ) [E
i
h fie . . . . . e
Hyb= Iyy',ps,51n6 + qs,cosd + (ps,cosﬁ - qs,51n6)6— (rs,—é)B
1.13) -, . R '
- lrs,-ﬁ + (ps,siné + qS,cos§)8 sinf
-h = i N . - :
1.14) sz= Iblsiéﬁ{ps, s;nﬁ +aq_, cos$ - 2(rs. - &) F + rg,(ps,cos<S
- 8§\ B 2R ind 8 +r . = 8
g sin )‘+ cos t2 (ps.51n + qqr cos ) + T ¢

. N
- (ps, siné + g LOSé)(pS,COSO - qs,51nh):]
5

B T I S L e aal

2]

}l .G—S - * _ N 8 S _ 2
+ cosB sin Axs' e(rs, qs.ps,ﬂ + cos léys' e(ps, + T4

).

i

cosB

Y



Substituting 1.11) and 1.12) into 1.6) and solving for B gives:

o R | ) .
1.15) B = mb LCOSB{AZS' + e(ps| + qS'rs'))'
, - s
S . i
+ sinB {sindkxs. - e(rs. - qs'ps.z. + cosG[:AyS.
- e(psy2+ 1‘829)]'/

J
+ ﬁsvcosd - dsvsind - (ps'sind +qS.cosﬁ)é

2 2 N
+ (cos B - sinB) {(ps.sind + qs.cosg)(rs. —5)}
I .. 2 ) 2" M
- sinB cosg l(rS' -8) - (pgr5ing + qgr1c0s5) i~ _Xb
" I
Substituting 1.9) and 1.14) into 1.8) and solving for ¢ gives b

* _"mR s . N .
1.16) § = Ibcosﬂ gcosﬁLAxs. - e(rs. - qs.ps.ﬂ - 31n5[4

S ]
ys
'e(le + rs%)ﬂ
( =
+ tan %?s.siné + és.cosa - z(rs. -§)3 + rs.(ps.cosd
—qs.sinG%
+2§(ps.siné + 9 r1cos 8 + is' - (ps.sin6 + qg1€OS§) (Ps.c055

- qs.sind)
M!l
-"zb
IbcosB

The rotating shaft-frame components of rates and accelerationsg are
derived in terms of fixed shaft-frame components in Appendix B. The resulting

equations are:

P siny + q, cosy

1.17) g1 = -y cosy + qssin /]

r«= rs“ 9]

. = . + [ ] _
ps pssinw qscosw qS,Q

1.18) 9qr = - p cosy + qssinw + ps,Q
r,=r -0
s s



A ,=A siny + A cosY
XS XS ys
1.19) A° , = - A cos¥+ A  sin¥
ys XS ys
s L= A
zs zs

Equations 1.15) through 1.19) then allow determination of flapping
acceleration and lead-lag acceleration from fixed shaft-frame components

of rates and accelerations.




Chapter 11

Comparison with RSRA Rotor Equations

In this chapter the results of Chapter I are compared with the equations
of Ref. 1 and Ref. 2 to evaluate the relative merits of the equations for
simulation and analytical studies. The blade flapping and lead-lag equationms,

as given in Ref. 1, are: | -

B—El__R__ 8 \) g - + +. ‘.y+.- .
2.1 : ? 2, te 2 (pscos¢ q351nw) psinv + g _cosy

b
2
+ sinfcos® A siny - A cosy - e(r_ - Q)
ys XS s

') -
+ cos”B c036 p siny + q CObw - 2(8 +8) (qssinw - pscosw)

- 2931n6 p 31n¢ + q cosw h

- M
+ cosBsing 28(r - @) - (r - @2 - X
-8 s : Ib -
ve ma : '2
2.2 § = ———ro sind A sinw - A cosw - e(r -
I cosB, Y8 i
b - ' -13 ;

- cos&A sinw + Ay cosy + e(ﬂ -r )}!

+tan62ﬂ(°+5-r)+qsin (¢;+6)-pcos (w+6)

+

}s -0 ZB-cosé(q sind - p_ cosQ) + siné(p siny + q_ cosw)

h
-sz

T, cosd
whrere the notation has been changed as required for consistency with this paper.
In order to compare equations we must write é and g in terms of s-frame
variables. This is accomplished by substituting 1.17) through 1.19) into

1.15) and 1.16) to get:
-

2.3) B3 = mR ’coss A + e 20(p cosy - q _sing)
Ib P zs . s s
: o
+ p 51nw + q SSOsY +r (q slnw - pscoqw)
. o e |2 . 27
+ sinfcosé fysSIUw - Axscosw [ Q)7+ (ps siny + qscosw) !;
+ sinBsiné'Ax331nw + Ayscosw '( - Q)
- y OS ing - l
(pssing + qscos¢X(q851n¢ pscoswl
+ (cosZB - sinzs) cosé(r =~ Q -S)(qgéinw - pscosw)

. )
+ sina(rS -Q - 6)(pssinw + qscosw); )
. " . . . 32 N 2'
+ sinBcosR Epssinw + qsccsw)51n6+(q851nw-pscosk)cos§ --(rS - 0=8) .
" . .
o x iny 1 - W kN £ . . :
+ LosdPS siny + q_cosy - (u + L)(q581nw pSLOSv)i )
- sinéﬁssinw - 6qcosw + (2 + é)(pqsinw + quﬂsw Y - b
: S ‘ LT



P

Icose_

2.4) 6 = E-R——-!-sirﬁ& sin ¢- A cos v
b Lys Xs

-
p 2 . 2
- e _(rsr )< + (pssunp + qscosw) _jj
- cosS«A_ sind + A cosy

| Xs Vs .

% . o - p_cosy]]
+e T + (pssuxw + qscosw) (qssn'up pscosq,)_J

|
|
J_

+ tanﬁi Zé(Q + 8- rs) + :is(coswsiné + sinycosg)

- I;S(COS‘PCOS5 - sinysing)

+ rSES(sianosé + cosysind) + qs(cos«pcosé - simpsin(s_ﬂ}

+ :-s -8 + 28 [cosG (qssinp - pscosp) + sing (pssin.p+ q cosy )]
+E)s(cosbcos<5 - sinpsind) - qs(cosusinﬁ + sinpcosé:)J Lps(sinpcosé
+ cosysing) + qs(cos‘pcos(s - sinwsiné)]

h
- Mzb 4
Ibcos B

Neglecting second order terms in shaft rotational rates (pS, qs, rS) and

using the trigonometric identities:

2.5) sin(y + ) cosvsin 8+ sinfcoss
cos +6) = cosycoss ~ siny sing

we may rewrite 2.3) and 2.4) as:

2.6) 8 = ?R [COSB fAzs + e[ZQ(pscosw - qssinw) + éssinw + ciscos@}
b |

+‘nBo5~rA siny - A_ cosy - e( —)2-w
sinBcos ysSiny <s"OSY T, Qj

+ sinfsins$ rA siny + A_ _cosy - e(r. - é)jj,
L XS ys s j

+

2 . 2 .
(cos™g - sin s){ cosé[- (@ + §)(q_siny - pscosw)]

+ sind[— Q + é)(pssinw + qscoswﬂl

cosBsinf {Zé(xs - Q) - (rs ~ Q)2 - éz

6 * . - _ ' . ~ .
+ cos P siny + q cosy (h + 5)[c;ssz.ngJ pscosu] Mh
. . . b
siné{q simp - p cosy + (0 + 6)[p siny + q cosu]s_—’_‘_
s s s s J Ib

9



-—

$5—-f~ fsiné A siny - A_ cosy - e(r - Q)
I, cosp | ys XS s
’ |

2,

cos§ A siny + A cosy + e(y - r )
| xs ys

! -
f. . . . ’
+ tanp 28(548 - rs) + qssin(y + &) - pscos(u + &)
v i
+ r, - ot 28{8035 (qssin¢ - pgLosy ) + sinS(pSsinw+ qscoswl
h
-Mzb
I cos
b 0sf

Comparing 2.7) and 2.2) we see that the equations are identical so the

only additional assumption made in the lead-lag equation of Ref.

1 is that

second order terms in shaft rates may be neglected.

Comparing 2.6) and 2.1) we see that further rearranging is required for

comparison. Using the identity:

2.8) coszB + sinZB =1
we multiply the last two lines of 2.6) by 2.8) and regroup to get:
2.9) é = Ej&-;éossfg + e[2?( cosy - siny) + p siny + g c cLJﬁ
: Ib 3 | 28 £8Py dgsiny PgSiny + q cosy
+ sinBcosG[A siny - A cosw - e(r - 9)2
ys XS

s )

. .ﬂ

+ singsind/A_ siny + A cosy - e(r -~ DE
XS Vs s y

2 . .
+ cos 8{;086Lpssinw + chosw

2(a + é)(qssinw - pscosw:J

L

- sinﬁ{&ssinw - ﬁscosw + 2(0 + S)(pssinw + qscoswﬂv

. . 12 -él
+ c05831n8{%6 (rS - Q) - (rs -M" -8 3

+ sinzﬁ {cosd{éssinw + éscos@ - sind[éssinw - éSCOSW“
hoL -
M

J

b

Xb

b

10



A comparison of 2.1) and 2.9) now reveals the following discre-

pancies in 2.1)

1. Line 3 in 2.9) has been neglected. This may be justified
by assuming sin § is small.

2. All terms not including the factor @ (rotor rate) have
been dropped from line 5 in 2.9). This may be justified since the other
factors are relatively small compared to { but the same is true for line
4 and similar terms have not been neglected there.

3. The square of the lead-lag rate,é » has been neglected in

line 6. It is not clear however, that this is negligible compared to squares of ry

and products of T, and 6,

4. Line 7 in 2.9) has been neglected. This may be justified

by assuming that sinZB is small.

The approach of Ref. 2 is to substitute Euler's equations in the blade-
frame into the moment equations and solve for the rotational accelerations
in the blade-frame. 1In this paper, Euler's equations in the blade~frame are
given in equation (C.3) and the moment equations are equations 1.6) through

1.8). Performing the substitutions we obtain:

. 1 h h

2.10) Py Ib (be - mRAzb) T QT
. 1 h h

2.11) T Ib (Mzb + mRAxb) + 2

Equation 2.10) agrees with its counterpart in Ref. 2, however the equa-
tion for rb in Ref. 2 has a minus sign on the hinge acceleration term and

appears to be in error.

11




In Ref. 2, ﬁb and Eb are integrated and the flapping and lead-lag
rates obtained as a function of the difference in blade-frame and rota-
ting shatt-frame rates. The appropriate equations in this paper are given
in (B.16) and the resulting expressions for flapping and lead~-lag rates are:

2.12) B = pS,COSS - qs,sinS - Py

2.13) &

[}S,sinﬁ + qs,cos§]sin8 + rs,cosﬁ - rb

No differential equation for 9 has been obtained since the moment
of inertia about the y-axis has been assumed negligible so there is a
problem in obtaining values of qb for use in 2.10) and 2.11). 1In Ref. 2 it
is suggested that, with the exception of blade pitch control, q, may be
negligible. This seems unlikely, however, since the rotational degrees of
freedom of the rotor shaft as well as the lead~lag rate (5) and the rotational
rate () can couple into the y-axis of the blade~frame. A solution to this
pProblem can be obtained by noting that 2.12) and 2.13) have been obtained
from the Py and ry equations of (B.16) so an independent equation for 9
remains and is given as:

2.14) q = lps,siné + qs,coséjcoss - (rs, - §)sing
where é is obtained from 2.13). The hinge accelerations in the blade-frame
and the rotating shaft frame rates are required in 2.10) through 2.14) and
may be obtained from the fixed shaft-frame rates and accelerations by

1.9) through 1.11) and 1.17) through 1.19).

T R .
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Chapter III

Conclusions

The equations for the inertial dynamics of a rotor blade as derived
in Chapter I are intended to serve as both a general purpose simulation
model and as a baseline for more specialized analytical studies. In this pa-
per, no assumptions as to the relative magnitude of the rates have been
made. For most applications it should be possible to further simplify
these equations by appropriate assumptions. This derivation has been in-
tended to serve as a baseline for more specialized applications; hence, only
the most generally applicable assumptions have been utilized.

By writing the flapping and lead-lag equations in terms of rotating shaft-
frame rates and accelerations the equations have been significantly simplified
over the formualtion in Ref. 1 where these equations were given in terms of
fixed shaft-frame variables. In this paper the rotating shaft frame variables
are obtained by a separate transformation from the fixed shaft frame variables.
This allows for a more structured approach to programming and thereby improves
the efficiency of the simulation. Programming errors are also more readily
located and corrected in this format.

The validity of the equations of Ref. 1, which are used in the current
RSRA simulation, was checked by combining the modules derived in Chapter I
to obtain differential equations for blade flapping and lead-lag motion as a
function of fixed shaft frame variables. By neglecting higher order terms in
some rates the lead-lag equation was f.c-¢ Lo pe Zdentical to the lead-lag
equation of Ref. 1, but discrepanc*es were feund in the flapping equation.

The discrepancies appear to be the result of inconsistancies in applying small

13
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angle and low rate approximations in the equations of Ref. 1. No attempt
has been made in this paper to determine the validity of these assumptions
or the numerical significance of the discrepancies,

The approach used in Ref. 2 is to obtain equations for the rotational
accelerations of the blade~frame aad integrate these accelerations. The
flapping and lead-lag rates are then found as a function of the difference
between blade~frame and rotating shaft-frame rates. This approach was re~
Peated in Chapter II for comparison purposes and a discrepancy was found in
the £b equation. The sign of the hinge acceleration term in this equation

appears to be in error in Ref. 2.

tion for 9;, can be obtained since the y-axis moment of inertia of the blade

is assumed negligible and the suggestion made in Ref. 2 that 9, may be small

and can be neglected does not appear to be justifijed, A solution to this

problem ig suggested in Chapter II of this Paper and involves solving for Y

as a function of rotating shaft axis rates and lead-lag rates. With this
addition, the equations of Ref., 2 may be well suited to simulation since
they are presented in an extremely modular format. For analytical work,

however, explicit differential equations for blade flapping and lead-1lag

motions are required rather than expressions for these variables in terms of

the output of other differential €quations. The €quations derived in this

Paper are intended to satisfy both simulation and analytical requirements.

14
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Appendix A

Coordinate Systems

The four coordinate frames used in this analysis are shown in

Fig. A. 1, They are:
1) The fixed shaft-frame (s).
2) The rotating shaft-frame (s").
3) The blade-frame (b).

4) The principal axes frame (p).

x-axis in the x-z Plane of the aircraft and its z-axis normal to the

plane of the rotor hub. The s-frame is the starting point of this analysis,

Rotational rates and accelerations and translational accelerations of this

frame are assumed available in terms of rates and accelerations at the

aircraft center of gravity,

The rotating shaft-frame (s') is shown relative to the fixed siaft-

frame in Fig. A.2. This frame is centered in the hub but rotates with

the blade. Its y-axis is directed through the co-located hinges and its

z-axis is normal to the rotor hub. The x-axis of the s'~frame is aligned

with the y-axis of the s-frame at V=0,

The relative orientations of the blade-frame and the rotating shaft-frame

are shown in Fig, 4.3, The rotating shaft-frame ig centered at the co~located

hinges and fixed to the blade, so its origin is displaced from the s-frame

origin by the amount of hinge offset, The y-axis of this frame is aligned

with the blade and its x-axis is normal to the plane of the flapping hinge.

15
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The origin of the Principal axes frame (p) is co-located with the
origin of the blade-frame but the pPrincipal axes are fixed in the blade
and oriented to eliminate all products of inertia.

The relative orientation of the principal axes frame and the blade-
frame is shown in Fig. A.4. Tt has been assumed that the b axis (axis
of feathering) passes through the center of gravity of each blade cross
section. The Y axis is then a principal axis since the x-y and z-y
products of inertia vanish. The x and z principal axes are consequently
in the x-z plane of the blade-frame at an angle @p from the X, and z
axes, where Op is chosen to make the x-z product of inertia vanish.

Note that @p is a function of the blade twist and the impressed blade
pitch, so it will vary with cyclic and collective control inputs.

The transformation from the blade-frame to the principal axis-frame

consists of a single rotation, @P, about the Y axis and is given by

coso 0 -sinCﬂ
(4.1) o = | o 1 0
sin® 0 cos0

16



Figure A.1.Coordinate Systems

Figure A.2.

Fixed and Rotating Shaft Frames
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Figure A. 3, Rotating Shaft and Blade Frames
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Figure A.4.

Principal Axes and Blade
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Appendix B

Rotational Rate of Blade Frame

Starting from the fixed shaft—frame, s, the rotational rate of the
rotating shaft frame, s', is given by:

t '
- > > -
s S S -8

(B.1) =W +w

The vector ;s ® is the rate of the s'~frame relative to the s~frame
and from Fig. A.2 is seen to be:
(8.3) W8S L R
where Q is the rotor rate.
Combining (B.1), (B.2) and(B.3) the rotational rate of the s' frame

may be written as:

+s' s' s' s' o
(B.4) w P, Is + qs Jg + rS ks
where:
s'
Pg = Ps
sl
(B.5) 95 = 4
S'
rs = I‘s TR

From Fig. A.2 the transformation from the shaft to the rotating shaft

axes is seen to be:

sinY cost ¢
(B.6) T "/g =1 -cost sim¥ ¢
s 0 0 1

where ¢ is the azimuth of the blade.
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The rotational rate of the s'-frame may then be resolved into s'

components using (B.6). We then have:

+g? > -> ->
(B.7) w = Psv 18' + qs' jsv + rS' ksl
where:
ps. = pssinw + qscosw
(B.8) Qg =-P_ cosy + q siny
rs' = rs -

Differentiating (B.8) the rotational accelerations in the s'-frame

are found to be:

1; - pssiny + &s cosy - qs, Q

(B.9) Qe = “Pgcosy + q_ siny + p_, @

Using (B.6) the acceleration of the origin of the fixed shaft-frame

may be written in rotating shaft-frame ccordinates as:

s
Aggr = Axs siny + Ays cosy
s .
(B.10) Ays'- -Axs cosy + Ays siny
8

s
' = A
2s z

s

The rotational rate of the blade-frame, b, is given by:
-’

-+ v > '
(B.11) WP - w8’ | wb-s

1 4
where ;b %" is the rate of the blade-frame relative to the rotating shaft-

frame. From Fig. A.3 we may write ¥* ° in blade coordinates as:

(8.12) w5 - - 6L+ 8s1ne'j'b - coss &

where B is the flapping angle and &is the lead-lag angle.
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The transformation from rotating shaft-frame to blade-frame is

found from Fig. A.3 to be:

!

i1 0 0 lcosg ~ sing 0
(B.13) Tb/s' 10 cosB —sinslisins cos§ 0
LO siug cosg;’ 0 0 1
or
(B.14) T cos § -sing 0
b/s' =|cosBsind cosBcosS -sinB
sinBsindé sinBcosS cosB

Using (B.14) to resolve (B.7) into the blade~frame and combining

the result with (B.11) and (B.12) we get:

B.15) oD i+ 3o+ %
(8. R N N R Y
where:
P, = Pgicosd - q_, sind ~ 8
(B.16) q = [?s,sinﬁ + 9 cosé]cosﬁ - (rs. —5) sinB
r, = [és.sinﬁ + A cosé]sinﬁ + (rs, -5) cosB

Pb = pS' coss - qsv sind ~g - E’sv sind + qsv COS’GJ $

l
. coss + !}s' cosd - Ay sind; §
-(r , - 5)%}cosﬁ
B ]
s " [ N e .
' [f = 8+ LPs,sinﬁ + g0 cos§18151n8

P+ siné + 9 cos§ + [?s' cos§ - 9qr siné]d

-(r_, -3)§} sing

S

(B.17) qy, = ps,sind + q

[}

P
®

+ {?s, -5+ [?s' siné + g cosé}élcoss
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Appendix C

Euler's Equations in the Blade Frame

The angular momentum vector in the blade-frame may be written in terms

of the principal moments of inmertia as (Ref. 3):

-h T >
(c.1) H = Tp/b Ipr/b W,

where Tp/b is the transformation from the blade-frame to the principal axis
frame, as given by (A.1l), Ip is the principal moment of inertia tensor, and
ﬁL is the angular velocity of the blade-frame, as given by (B.15).

Substituting (A.1) and (B.15) into (C.1) gives:

ﬁZb = (Ixx c0529p + Izz sinzep) Py + (Izz - Ixx) sinepcoseprb
(C.2) ﬁ:b = Iyyqb
ﬁ:b = (1,, - 1) sin0 cose p + (I sinzep I coszep)rb
The time rate of change of the angular momentum vector is then:
€3 H=TP+5 xH
A significant simplification can be obtained by the following assumption:
(C.4) 1 =1, %1

The angular momentum components are then:

-ﬁh

xb = IbPpb
+h
c.5 -
(C.5) yb yy%b
+h
Hp = 1%

Note that this assumption has eliminated all Op terms, making the moments

of inertia constant in the blade-frame.
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Using (C.5) in (C.3) gives:
.h - -
Heb = Ipbp + (I~ L%

.h L]
C.6 H, =1
(C.6) b yyIb

gh r

zb - Tpfp (I, -1) paq,
If we further assume:

(c.7) Iyy << Ibb

then (C.6) becomes:
iy, - L,y + 1)
(C.8) ﬁ:b = Iyy&b

‘zb = Ib(;b'pbqb)

Using (B.16) and (B.17) (in (C.8) gives:

| . . r -
be = Ib< Pg 1CO86 ¢ ,siné- [p 18iné + g ,cosé] 8 -8

. .

) )B.I cospB

-

(C.9) + [cos B -sin %[p v8iné + q ,cosd] (r ,-6 )
~sinB cosg [(r ,-6) —(ps,s1n6 — Qg1 cosé) J
i oa g p ]
vb = vy ps,siné + q s COSS + (p 1cosé~ qg ,sincS)G (r
(C.10) - : ’
—l L 5 + (p vSind + q ,cos(S)B s1n8f
, J
.h J L] *® . L)
(c.11) sz = Ib lsine[ps,s:i.ms + qgr 086 -2(rs, -8)R + L [ps,cosé -q ,sindﬂ
+ cosB[Zé[ ps,sind +qs,cosd] + {‘s' - 6

-[ps,siné + qs,cosdJ [ps,coscs —qs.sind]J
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Appendix D

Acceleration of Hinge Point

The acceleration of the hinge may be written as:

(0.1) & =S 4 s
where X° is the inertial acceleration of the origin of the s-frame
and Kh-s is the acceleration of the hinge relative to the s-frame.

Using the transformation of(B.6) we may write 7.0 interms of its

components in the s'-frame as:

s _ .8 < s s
@2 B aal, Il ean T a0,

From Fig. A.1 the acceleration of the hinge relative to the s-frame

is seen to be:

*>h-s >

(b.3) A =@
where:

@.4) o ae]

S'

We may write the derivative of (D.4) in terms of the rotational rate of

the s'-frame as:

e ' ]
(D.5) ‘E=é'§s,+’as xe=% xt
where we have noted that e is zero in the s'-frame. The second derivative

is then:

(D.6) * =% xe +35' x e_;
combining (D.1), (D.3) and(D.6) then gives:

(D.7) Xb = 18 +-és' xe +'§s' x (ﬁs' x &)

Using the definition of'as' in (B.7) and its derivative along with
(D2) and (D.4) we obtain:

+h _ h o h - h
©-8) A=A A Al d Ak
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where:

Using the
its components

3
(0.10) AP =

where:

= AS Z - -

= A —elrge = a, Py
s 2 2

- - R +
A}’S' e(Ps. rS' )

=A% 4+ e(p + r )
25! Psv qS' s'

transformation of (B.1l4) we may then write Kh in terms of

in the blade-frame as:

h > h > ho>
Agp 1o T A I, YA K

h h h
Axb Axs.cosﬁ - Ays' sind

D.11) Ab .

h h h
(Aks, sing + Ays' cos§) cosg - Azs' sing

yb
h h s h
Azb = (Ais' sind + Ays' cosq)sins + Azs' cosB
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